Single-charge Tunneling in Ambipolar Silicon Quantum Dots
نویسندگان
چکیده
'What a transistor is to a regular computer, we try to make for the quantum computer.' Filipp Müller explains. 'A quantum computer works with quantum bits, the so-called qubits. A qubit, for instance the spin of an electron, can take on values between 0 and 1 and can only be described correctly by quantum mechanics. We try to create a nanostructure in which we can isolate an individual electron.' 'We manufacture those nanostructures on silicon', Müller continues. 'Other groups investigate different materials, but we choose
منابع مشابه
Passivation and characterization of charge defects in ambipolar silicon quantum dots
In this Report we show the role of charge defects in the context of the formation of electrostatically defined quantum dots. We introduce a barrier array structure to probe defects at multiple locations in a single device. We measure samples both before and after an annealing process which uses an Al2O3 overlayer, grown by atomic layer deposition. After passivation of the majority of charge def...
متن کاملElastic tunneling charge transport mechanisms in silicon quantum dots
The role of different charge transport mechanisms in Si=SiO2 structures has been studied. A theoretical model based on the Transfer Hamiltonian Formalism has been developed to explain experimental current trends in terms of three different elastic tunneling processes: (1) trap assisted tunneling; (2) transport through an intermediate quantum dot; and (3) direct tunneling between leads. In gener...
متن کاملSilicon Metal-oxide-semiconductor Quantum Dots for Single-electron Pumping
As mass-produced silicon transistors have reached the nano-scale, their behavior and performances are increasingly affected, and often deteriorated, by quantum mechanical effects such as tunneling through single dopants, scattering via interface defects, and discrete trap charge states. However, progress in silicon technology has shown that these phenomena can be harnessed and exploited for a n...
متن کاملControlled coupling and occupation of silicon atomic quantum dots at room temperature.
It is demonstrated that the silicon atom dangling bond (DB) state serves as a quantum dot. Coulomb repulsion causes DBs separated by less, similar2 nm to exhibit reduced localized charge, which enables electron tunnel coupling of DBs. Scanning tunneling microscopy measurements and theoretical modeling reveal that fabrication geometry of multi-DB assemblies determines net occupation and tunnel c...
متن کاملElectron transport through silicon serial triple quantum dots
We study the electron transport through silicon serial triple quantum dots (TQDs) formed effectively in a lithographically-defined multiple quantum dot system on a silicon-on-insulator substrate at a temperature of 4.2 K. Our serial TQDs are composed of two lithographically-patterned QDs and another one inbetween formed by stress during the pattern-dependent oxidation process. The TQDs formatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015